
Differentially Private Online Task Assignment in
Spatial Crowdsourcing: A Tree-based Approach

Qian Tao †, Yongxin Tong †, Zimu Zhou ‡, Yexuan Shi †, Lei Chen #, Ke Xu †

†BDBC, SKLSDE Lab and IRI, Beihang University, China ‡ETH Zurich, Zurich, Switzerland
#The Hong Kong University of Science and Technology, Hong Kong SAR, China

†{qiantao, yxtong, skyxuan, kexu}@buaa.edu.cn, ‡zzhou@tik.ee.ethz.ch, #leichen@cse.ust.hk

Abstract—With spatial crowdsourcing applications such as
Uber and Waze deeply penetrated into everyday life, there is a
growing concern to protect user privacy in spatial crowdsourcing.
Particularly, locations of workers and tasks should be properly
processed via certain privacy mechanism before reporting to
the untrusted spatial crowdsourcing server for task assignment.
Privacy mechanisms typically permute the location information,
which tends to make task assignment ineffective. Prior studies
only provide guarantees on privacy protection without assuring
the effectiveness of task assignment. In this paper, we investigate
privacy protection for online task assignment with the objective
of minimizing the total distance, an important task assignment
formulation in spatial crowdsourcing. We design a novel pri-
vacy mechanism based on Hierarchically Well-Separated Trees
(HSTs). We prove that the mechanism is ε-Geo-Indistinguishable
and show that there is a task assignment algorithm with a
competitive ratio of O(1

ε4
logN log2 k), where ε is the privacy

budget, N is the number of predefined points on the HST, and
k is the matching size. Extensive experiments on synthetic and
real datasets show that online task assignment under our privacy
mechanism is notably more effective in terms of total distance
than under prior differentially private mechanisms.

I. INTRODUCTION

With the rapid development of mobile Internet and sharing

economy, spatial crowdsourcing has deeply penetrated into

everyday life [1], [2], [3], [4]. Many core functions in these

applications, e.g. task assignment, require users (i.e., workers

and tasks) to report their physical locations to the spatial

crowdsourcing server. For example, Uber drivers and passen-

gers have to report their real-time locations to the Uber server

for enabling effective dispatching to the passengers. Since the

spatial crowdsourcing server may not be trustworthy, it raises

severe privacy concerns if the location information of workers

and tasks is leaked or misused by the server. Furthermore, it

may even be illegal to directly communicate the true location

data to the server under new regulations, e.g. the General Data

Protection Regulation (GDPR).
Privacy-preserving task assignment arises as a generic so-

lution framework to protect location privacy of crowdsourcing

users while still enabling the server to perform task assignment

[5], [6], [7]. A privacy mechanism is typically designed to

permute the locations of tasks and workers before they are

reported to the untrusted server for task assignment. Two

characteristics are crucial in a privacy mechanism for task

assignment: (i) It is desirable that the privacy mechanism

satisfies Geo-Indistinguishability [8], a widely acknowledged

differential privacy metric to support single location query (as

is the case of task assignment). (ii) The privacy mechanism

should still allow effective task assignment on the permuted

location data. In other words, there should exist a task as-

signment algorithm with a guaranteed approximation ratio.

This is especially important in large-scale real-time spatial

crowdsourcing applications [1], [9], [10], [11], [12], [13].
Previous privacy mechanisms only provide guarantees on

privacy protection without assuring the effectiveness of task

assignment. For example, in [5], a differentially private mecha-

nism is proposed to protect the location privacy of workers and

a heuristic algorithm is designed for offline task assignment

on the protected data. In [7], the authors propose an ε-Geo-

Indistinguishable privacy mechanism to protect the location

privacy of both workers and tasks, and they further apply a

heuristic greedy algorithm for online task assignment on the

permuted data. However, neither of them has guarantees on

the competitive ratio of task assignment.
In this paper, we make the first attempt at privacy protection

for task assignment in spatial crowdsourcing that (i) is Geo-

Indistinguishable and (ii) provides theoretical guarantees on

task assignment. Particularly, we focus on Online Minimum

Bipartite Matching (OMBM), a task assignment formula-

tion with both growing research interests [10],[14],[15] and

practical adoption (e.g. ride-sharing, food delivery and last-

mile delivery). To this end, we devise a novel tree-based

privacy mechanism leveraging Hierarchically Well-Separated

Trees (HSTs). We prove that our mechanism satisfies Geo-

Indistinguishability, and further propose a fast implementation

of the mechanism to be fit for large-scale spatial crowdsourc-

ing applications. More importantly, we prove that, under our

tree-based privacy mechanism, there exists an online task

assignment algorithm that achieves a competitive ratio of

O(1
ε4 logN log2 k), where N is the number of predefined

points on the HST, and k is the matching size. Experiments

show that online minimum bipartite matching on data per-

muted by our privacy mechanism is notable more effective

than by the state-of-the-art differential private mechanisms.
Our main contributions are summarized as follows.

• We study the problem of location privacy protection for

online task assignment with the objective of minimizing

the total distance, an increasingly important problem in

practical spatial crowdsourcing.

• We propose a novel privacy mechanism based on HSTs,

which is ε-Geo-Indistinguishable, and allows online task

assignment that achieves a competitive ratio (approxima-

tion ratio for online algorithms) of O(1
ε4 logN log2 k),

where ε is the privacy budget, N is the number of

predefined points for constructing the HST, and k is the

matching size. To the best of our knowledge, this is the

first privacy mechanism that provides guarantees for both

privacy protection and task assignment.

• Extensive experiments on synthetic and real datasets

show that online task assignment under our privacy

mechanism is notably more effective than under the state-

of-the-art differentially private mechanisms.

In the rest of this paper, we define our problem in Sec. II.

We design a tree-based solution and prove its effectiveness in

Sec. III. We then present the evaluations in Sec. IV, review

related work in Sec. V and finally conclude in Sec. VI.

II. PROBLEM DEFINITION

This section formally defines the privacy protection desired

for online task assignment in spatial crowdsourcing.

A. Interaction Model

We first introduce the three main parties in typical spatial

crowdsourcing and their interactions.

Definition 1 (Crowd Worker). A crowd worker (worker for
short) w is a tuple (xw, yw), which denotes the coordinates
of w in the Euclidean space.

Definition 2 (Spatial Task). A spatial task (task for short) t
is a tuple (xt, yt), which denotes the coordinates of t in the
Euclidean space.

Definition 3 (Server). A crowdsourcing server (server for
short) S is an untrusted platform to perform major function-
alities of spatial crowdsourcing, e.g. task assignment.

As in many spatial crowdsourcing applications [16], [10],

[7], [17], [18], workers, tasks and the server interact as follows.

Workers register to the server beforehand and their availability

to perform tasks is known to the server. Tasks are dynamically

posted to the server and need to be immediately assigned to

workers. Finally, the worker who is assigned to the task will

travel to the location of the task and complete it. We assume

the locations of workers and tasks are indirectly communicated

to the server in a metric space X , i.e., their coordinates are

transformed into the points in X . Our focus is to provide

dedicated privacy protection on these points while allowing

efficient task assignment on the protected data.

B. Problem Formulation

Definition 4 (Privacy Mechanism). A privacy mechanism
(mechanism for short) M is a function that maps a point
x in a metric space X into an obfuscated point z in another
metric space Z with a probability of M(x)(z).

We focus on the mechanisms where X and Z are the same

metric spaces. In our context, x is a point transformed from the

coordinate of a worker/task. z is the point that is reported by

the worker/task to the server for task assignment. Particularly,

we are interested in a popular category of task assignment

called online minimum bipartite matching [10], [19], [1].

Definition 5 (Online Minimum Bipartite Matching [10]).
Given a set of workers W = {w1, w2, ..., wn} and a set of
tasks T = {t1, t2, ..., tm} that appear dynamically, Online
Minimum Bipartite Matching (OMBM) aims to assign for each
task a worker immediately when the task appears such that
the total travel distance of the assigned worker-task pairs is
minimized.

Now we can define our Privacy-preserving Online Minimum

Bipartite Matching (POMBM) Problem as follows.

Definition 6 (Privacy-preserving Online Minimum Bipartite

Matching). Given a set of workers W = {w1, w2, ..., wn}, a
set of tasks T = {t1, t2, ..., tm}, and an untrusted server S,
the Privacy-preserving Online Minimum Bipartite Matching
(POMBM) problem aims to design a privacy mechanism M
for the transformed locations of workers and tasks such that
(i) the mechanism is differential private in the metric space
X ; and (ii) the server can perform effective online minimum
bipartite matching on the privacy-protected data.

Quantitatively, M should (i) be Geo-Indistinguishability [8],

the widely used differential privacy for location data; and

(ii) allow an online matching algorithm A with a guaranteed

competitive ratio, a metric to assess the effectiveness of online

task assignment. We introduce these two criteria below.

C. Evaluation Criteria

We first present the criterion for privacy protection.

Definition 7 (Geo-Indistinguishability [8]). A mechanism M
operating on a metric space X is ε-Geo-Indistinguishable (ε-
Geo-I for short) if for any x1, x2 ∈ X and z ∈ Z , the
following inequality holds:

M(x1)(z) ≤ eεdX (x1,x2)M(x2)(z) (1)

where dX (., .) is the distance between two points in space X .

Geo-Indistinguishability defines the indistinguishability of

two points x1 and x2 (transformed from two locations in the

Euclidean space) when they are obfuscated to the same point

z. Hence if a worker/task reports a point z to the server, the

server cannot decide whether the actual point is x1 or x2, not

to mention the corresponding location in the Euclidean space.

Now we introduce competitive ratio, a widely used criterion

to assess the effectiveness of online task assignment [9], [10],

[20]. Denote dX (M) as the total travel distance in X of all

pairs in the matching M , i.e., dX (M) =
∑

(t,w)∈M dX (t, w).
We focus on the effectiveness of online matching in random

order model, i.e., the theoretical guarantee in the average

performance of the privacy mechanism and online algorithm.

Definition 8 (Competitive Ratio in Random Order Model).
The competitive ratio of an online matching algorithm A in
random order model for our POMBM problem is defined as

CR = max
∀T,W

EM,O[d(MA)]

d(MOPT)
(2)

Fig. 1: Workflow of our solution.

where EM,O[·] represents the expectation of a variable over
the distribution of M and all random orders, and MOPT is
the optimal matching with the minimum total distance given
that both T and W are foreknown.

III. A TREE-BASED SOLUTION

This section presents our tree-based solution to the

POMBM problem. Specifically, we devise a novel privacy

mechanism that is ε-Geo-I on a dedicated tree structure called

the Hierarchically Well-Separated Tree (HST), and then show

that a greedy matching algorithm on the obfuscated tree nodes

has a guaranteed competitive ratio. As next, we first present the

overview solution (Sec. III-A). Then we introduce the basics of

HST (Sec. III-B), present our privacy mechanism (Sec. III-C),

and further devise a random walk method to accelerate the

mechanism (Sec. III-D). Finally, we show the existence of

efficient online minimum bipartite matching algorithms on the

data protected by our mechanism (Sec. III-E).

A. Overview

The workflow of our solution follows the interaction model

among workers, tasks and the server introduced in Sec. II-A,

but is operated on a dedicated metric space embedded by a Hi-

erarchically Well-Separated Tree (HST) [21]. Fig. 1 illustrates

the workflow of our solution. It consists of four steps.

• The server constructs an HST upon a predefined set of

points and publishes the tree as well as the set of points.

• Each worker w maps his/her location to a node on the

HST, which is then transformed to an obfuscated node

on the tree via a privacy mechanism M. The obfuscated

nodes on the HST from workers are reported to the server.

• When a new task t appears, its location is mapped to a

node on the HST and then transformed to an obfuscated

node on the tree via M. The task with the obfuscated

node on the HST is then submitted to the server.

• Upon receiving the task with the protected location in-

formation, the server runs an online matching algorithm

A to assign a worker to the task. We show that there is

an algorithm that achieves a guaranteed competitive ratio

on these obfuscated data.

We make the following discussions on the above workflow.

• Our intuition to use HST for our solution are two-fold.

(i) HSTs are widely used for optimizing distance-related

objectives in matching since the distance in the metric

space can be upper and lower bounded by the distance on

HSTs. HST-based solutions prove effective to the OMBM

Algorithm 1: Construction of a complete HST.

input : A metric space (V, d).
output: A tree space (VT , dT).

1 π ← a random permutation of V ,

D ← �log2(2 ·maxa,b∈V d(a, b))�,β ← uniformly

generated from [12 , 1];
2 SD ← {V };

3 for i ← D − 1 to 0 do
4 ri ← β · 2i;
5 Let Si be an empty set;

6 for S ∈ Si+1 do
7 T ← S;

8 for j ← 1 to k do
9 // The set of those points in T whose

distance to π(j) closer than ri
U ← {u ∈ V |d(u, π(j)) ≤ ri} ∩ T ;

10 if U is not empty then
11 Add U to Si;

12 Make U a child node of S with

distance 2i+1;

13 T ← T − U ;

14 c ← maximum number of branches in the tree;

15 For each intermediate node w we add fake nodes until

it has c number of child nodes;

16 return the HST;

problem [15], [19], [10], which is part of our requirement

on the privacy mechanism. (ii) HSTs are tree structures

and the edges in the same level have the same length.

These properties are crucial to design a mechanism that

satisfies ε-Geo-I, as will be explained in Sec. III-B.

• As with existing studies [7], we assume that after task

assignment, workers can obtain the exact locations of

the assigned tasks via an extra privacy channel (e.g.
smartphones). Note that we mainly focus on privacy

mechanisms against the untrusted server. Security risks

from malicious workers are out of the scope of this work.

B. Construction of HST

A Hierarchically Well-separated Tree (HST) [21] can be

considered as a space embedding T = (VT , dT) of arbitrary

metric space (V, d) such that each leaf node located at level 0
corresponds to a point in V and the distance on the tree from

a node at level i to its parent is 2i+1. An important property

of the HST is that d(u, v) ≤ E[dT (u, v)] ≤ O(log |V |)d(u, v).
Before designing our privacy mechanism, we first need

to construct an HST. The construction of the HST has two

features. (i) We construct the HST on a fixed set of predefined

points. This is because according to our interaction model

(Sec. II-A), the server has no clue about the exact locations of

workers and tasks. It also saves communication cost because

otherwise the structure of the HST will change according to the

locations of tasks or workers as new workers or tasks appear

dynamically. (ii) We construct a complete HST by adding fake

nodes to simplify the information about the HST that needs to

be communicated to workers and tasks so as to further save

the communication overhead when publishing the HST.

Alg. 1 illustrates the procedure to construct a complete HST,

where an HST is first built and then made into a complete

one. Initially, we calculate the number of levels, and randomly

generate a permutation of V and the factor r of the radius of

the levels in line 1. The root node includes V at the beginning.

Lines 4-13 then construct the tree from top to bottom. For each

cluster in each level (i.e., S), we see if any point in S locates

in the ball centered at π(j) with radius ri in the order of π
(lines 9-10). If yes, these points are set to be a child node of

S (lines 11-12) and removed from S (line 13). Then for the

HST, we simply fill each intermediate nodes up such that the

HST becomes a complete c-ary HST, as shown in lines 14-15.

Example 1. Fig. 2 shows an example of building a complete
HST from the set of nodes V = {o1(1, 1), o2(2, 3), o3(5, 3),
o4(4, 4)}. We know that D = �log2(2·d(o1, o3))� = 4. Assume
we randomly choose the permutation π =< o1, o2, o3, o4 >
and β = 1

2 . For the first iteration we have r3 = 4. We split V
in order of π into {o1, o2} (located in the circle centered at
o1 with radius r3) and {o3, o4} (located in the circle centered
at o2 with radius r3), as the red circles show in Fig. 2a. The
corresponding tree at this time expands to level 3 in Fig. 2b.
Then when i = 2, as shown in Fig. 2a, we draw the blue circle
centered at each point in order of π with radius r2 = 2, and
see if these circles have intersection with two obtained subsets
{o1, o2} and {o3, o4} when i = 3. The subset {o1, o2} is split
into {o1} and {o2}, and we split the node {o1, o2} at level 3
into {o1} and {o2}. A same procedure goes at level 2 and level
1. After constructing the HST, we find its maximum number
of branches is 2, and add fake nodes to make it complete.
Finally, the complete HST is shown in Fig. 3.

Complexity Analysis. Denote D as the level of the HST. The

construction of an HST takes O(N2 ·D) time. To further build

a complete HST, the algorithm needs to traverse the complete

HST, which takes cD time. Hence the total time to construct

a complete HST is O(N2 ·D + cD).
Once the HST is constructed and published (together with

the predefined set of points), each worker/task will choose the

node on the HST whose corresponding predefined point in the

Euclidean space is nearest to his/her actual location. These

nodes are then fed into our privacy mechanism to generate

obfuscated ones, which are finally reported to the server.

C. Privacy Mechanism on HST

This subsection presents our privacy mechanism on the

HST, and proves that it is ε-Geo-Indistinguishable. We assume

a complete c-ary HST.

Our Mechanism. Given a leaf node x transformed from the

location of a task/worker, we first partition the whole leaf

nodes (the set of which is denoted as L) based on the level

of the least common ancestor (LCA) between x and the leaf

(a) Circles in Example 1. (b) The HST in Example 1.

Fig. 2: The circles and the HST in Example 1.

Fig. 3: The complete HST in Example 1.

nodes. Specifically, define sibling node set at level i, denoted

by Li(x), as the set of nodes whose LCA with x is located

exactly at level i. Let L0(x) = {x}. Then ∪D
i=0Li(x) = L and

|Li(x)| = (c− 1)ci−1 for i ≥ 1. And the distance on the tree

between x and a node a ∈ Li(x) is 2i+2 − 4.

Now we obfuscate x. For each leaf node in Li(x), we assign

it a weight wti, which represents the portion that the node

is chosen as the obfuscated node. Specifically, since there

is exactly one leaf node in L0(x) and ci−1(c − 1) nodes in

Li(x) for i ≥ 1, the total weight of all leaf nodes is WT =
wt0+

∑D
i=1 c

i−1(c−1)wti. And a leaf node in Li(x), denoted

by z, will be chosen as the obfuscated node with a probability

M(x)(z) =
wti
WT

. (3)

Next we determine the values of wti. To satisfy ε-Geo-I,

wt0 must be no greater than e(2
i+2−4)εwti for any i ≥ 1.

To obtain a smaller distance, we choose wt0 = 1 and wti =
e−(2i+2−4)εwt0 = e(4−2i+2)ε. Hence we have

WT = 1 +

D∑

i=1

ci−1(c− 1)e(4−2i+2)ε. (4)

Now we obtain a mechanism, and we will show that the

proposed mechanism satisfies ε-Geo-I in Theorem. 1.

Alg. 2 shows how our privacy mechanism M obfuscates a

node x on the HST. For each leaf node in T , we compute its

probability of being the obfuscated node according to Eq.(3),

as shown in line 1. The obfuscated node is then chosen based

on the probability and reported to the server.

Example 2. Back to our settings in Example 1. Suppose we
want to obfuscate node o1 in Fig. 3 with ε = 0.1. For a
leaf node whose LCA with x is at level i, the weight and the
probability of the node being the obfuscated one are listed in
Table I. Take i = 1 as an example. The weight of the leaf
node f1 is e−4ε = 0.670, and the probability of f1 being the
obfuscated node is wt1/(w0 +

∑D
i=1 2

i−1wti) = 0.264. Our

Algorithm 2: Privacy mechanism M on HST.

input : A complete c-ary HST T , a leaf node x on T ,

and a privacy budget ε.
output: The obfuscated leaf node on the tree.

1 Compute for each leaf node a in T the probability

M(x)(a) according to Eq.(3);

2 Sample x to the obfuscated leaf node x′;
3 return x′;

TABLE I: Probability of leaf nodes being the obfuscated nodes.

Level i Li(o1) wti Probability
0 o1 1 0.394
1 f1 0.670 0.264
2 f2, f3 0.301 0.119
3 o2, f4 − f6 0.061 0.024
4 o3 − o4, f7 − f12 0.002 0.001

mechanism then randomly chooses a leaf node among all these
leaf nodes with the probability in Table I.

Geo-Indistinguishability. M is ε-Geo-I, which is ensured by

the following theorem.

Theorem 1. The mechanism M (Alg. 2) is ε-Geo-I. That is,
given two leaf nodes x1 and x2 on the HST, M satisfies

M(x1)(z) ≤ eεdT (x1,x2)M(x2)(z) (5)

for leaf node z ∈ L, where M(x1)(z) is the probability that
node x1 is obfuscated to node z, and dT (x1, x2) is the distance
between x1 and x2 on the HST.

Proof. We use lca(u, v) and lvl(u, v) to represent LCA of u
and v and the level of LCA of u and v, respectively. We prove

the theorem in two cases.

Case 1: lvl(x1, z) > lvl(x1, x2). In this case z is located

outside the subtree rooted at lca(x1, x2) (which we denote as

Tlca(x1,x2)). A first observation is that lvl(x2, z) > lvl(x1, x2).
In this case the LCA of x1 and z, i.e., lca(x1, z), and that

of x2 and z, i.e., lca(x2, z), coincide, and they both have a

higher level than lca(x1, x2). This means that for either x1 or

x2, the weight assigned to z is the same, i.e., wtlvl(x1,z) =
wtlvl(x2,z). Hence it has the same probability for x1 and x2

being obfuscated to z. Since εdT (x1, x2) ≥ 0 always holds, 5

holds if lvl(x1, z) ≥ lvl(x1, x2).
Case 2: lvl(x1, z) ≤ lvl(x1, x2). In this case, we have

lvl(x2, z) ≤ lvl(x1, x2), since otherwise lca(x1, z) will also
be greater than lca(x1, x2), which contradict to our assump-
tion. This means x1, x2 and z are located in a same subtree
rooted at lca(x1, x2). Also note that lvl(x1, z) ≥ 0. Hence,

M(x1)(z)

M(x2)(z)
=
wtlvl(x1,z)

wtlvl(x2,z)

=exp{ε(2lvl(x2,z)+2 − 2lvl(x1,z)+2)}
≤exp{ε(2lvl(x1,x2)+2 − 4)}
=eεdT (x1,x2). (6)

Thus the theorem also holds if lvl(x1, z) ≤ lvl(x1, x2).

Complexity Analysis. M enumerates all the leaf nodes in the

complete HST and each node has c branches. Hence its time

complexity is O(cD) where D is the height of the tree.

D. Random Walk Based Acceleration

Since the naive implementation (Alg. 2) of our privacy

mechanism takes O(cD), we propose a random walk based

alternative, which still generates the same distribution as

Alg. 2, but reduces the time complexity to only O(D).

Random Walk Based Implementation of M. Recall that

Li(x) is the set of leaf nodes whose LCA with x is located

at level i, and wti is the weight for a node in Li(x) being

sampled. Our key observation is that given the exact node x
and any level i, each node in Li(x) has the same probability

being sampled.

Concretely, we define twk as the total weight of leaf nodes

whose level of LCA with x is equal to or greater than k:

twk =

{∑D
i≥k c

i−1(c− 1)wti, if k > 0

w0 +
∑D

i=1 c
i−1(c− 1)wti = WT, if k = 0.

(7)

The random walk method first walks upward along the tree

from the exact leaf node. In each passed intermediate node

located at level i, we continue to walk upward with probability

pui = twi+1

twi
and with probability 1 − pui = ci−1(c−1)wti

twi

change to walk downward. Once we decide to walk downward

at an intermediate node u located at level idw, among each

child node of u except for the node which is the ancestor

of the exact node x, we randomly choose a node to walk

downward, each of which with probability 1
c−1 . Note that

we ignore the ancestor of x located at level idw − 1, say

ancidw−1(x), because those leaf nodes located at the subtree

rooted at ancidw−1(x) do not belong to Li(x). After we turn

our direction to walk downward, at each passed intermediate

node u we uniformly choose a child node of u (i.e., each child

node with probability 1
c) to go downward, until we reach a leaf

node. The leaf node is then chosen to be the obfuscated node

of the exact leaf node x.

Alg. 3 shows the pseudocode of the random walk based

implementation. We use u to represent the current node we are

going through, and Iupward the direction (line 2). We first walk

upward and in each passed intermediate node choose whether

to change the direction or not (lines 4-7). For the first time

of walking downward (now i = idw), we uniformly choose

one of the child of u except for anci−1(u) (line 10). Finally

we uniformly choose a child node of the current intermediate

node until we reach a leaf node (lines 11-12).

Example 3. Back to our settings in Example 2. Fig. 4
shows the probability for random walking in each level and
one possible path starting from o1 on the tree. The path is
marked in red arrows. Note that we change the notations of
intermediate nodes in Fig. 4 for a clear description. We start at
oi and go on walking upward with probability pu0 = 0.606 at
node o1 and with probability pu1 = 0.564 at node o1,1. Now
we reach the node o2,1 at level 2. Suppose the sampling at level
2 changes our direction to downward. Since node o2,1 has only

Algorithm 3: Random walk based implementation of

M.

input : a complete HST T , a leaf node x on T , and a

privacy budget ε.
output: An obfuscated leaf node on the tree.

1 u ← x; // the node we are going

2 Iupward ← 1;

3 while True do
4 i ← level of u;

5 Iupward ← 1 with probability pui or 0 with

probability 1− pui;

6 if Iupward is 1 then
7 u ← parent of u;

8 else
9 break;

10 u ← uniformly choose one of the child nodes of u
except for anci−1(u) ;

11 while u is not a leaf node do
12 u ← uniformly choose one of the child nodes of u;

13 return u;

Fig. 4: The path of random walk in Example 3 and the nodes

of tasks and workers in Example 4.

two child nodes and o1,1 is where the leaf node o1 comes from.
Hence with probability 1 we walk downward to node f1,1. At
node f1,1 we reach the fake node f3 with probability 0.5 and
choose f3 as the obfuscated node. The probability of o1 being
obfuscated to f3 is pu0 × pu1 × (1− pu2)× 1× 0.5 = 0.119.

Correctness of Random Walk Based Method. The random

walk method is still ε-Geo-I based on the following theorem.

Theorem 2. The random walk method in Alg. 3 generates the
same distribution as that in Alg. 2.

Proof. Suppose the exact node is x. For a leaf node a whose

LCA with x is located at level lvl(x, a), i.e., a ∈ Li(x), the

random walk method finishes at a if and only if

• we walk upward until reaching lca(x, a) and

• in each time of downward walking we choose the child

node which is the ancestor of a (or a itself).

If lvl(x, a) = 0, i.e., x and a coincide, x is chosen to be the

obfuscated node when we change the direction immediately

at x. The probability is

M(x)(a) = 1− pu0 =
wt0
WT

.

Algorithm 4: A greedy algorithm on HST.

input : A complete HST T , the set of obfuscated

points of unassigned workers W ′.
output: The matching M .

1 W ′
u ← W ′, M ← ∅;

2 for Each appearing task with obfuscated node t′ do
3 w∗ ← the closest node in W ′

u on T (ties are

broken arbitrarily);

4 M ← M ∪ {(t′, w∗)};

5 W ′
u ← W ′

u − w∗;

6 return M ;

Fig. 5: The locations of tasks and workers.

When lvl(x, a) > 0, the probability that a is chosen to be the

obfuscated node, i.e., M(x)(a), is

(

lvl(x,a)−1∏
i=0

pui) ·
1− pulvl(x,a)

clvl(x,a)−1(c− 1)
=

wtlvl(x,a)

WT
,

which is exactly the probability in Alg. 2.

Complexity Analysis. The random walk traverses each level

on the tree at most twice. Hence its time complexity is O(D).

E. Effectiveness of Task Assignment on Obfuscated Nodes

Recall that a privacy mechanism for our POMBM problem

should not only be ε-Geo-Indistinguishable but also allow on-

line task assignment with a bounded competitive ratio. As next,

we present an HST-based greedy algorithm which operates

on the obfuscated nodes and achieves a competitive ratio of

O(1
ε4 logN log2 k), where N is the size of the predefined point

set and k = min{n,m} is the size of the matching result.

HST-Based Greedy Algorithm. Alg. 4 illustrates the HST-

Greedy algorithm for the server to perform online task assign-

ment on the obfuscated nodes. W ′
u and M represent the set

of unsigned workers and the temporary matching, respectively

(line 1). For each new task with the corresponding obfuscated

node t′, the algorithm assigns the task to the worker that is

the closest to t′ on the HST and removes the chosen worker

from W ′
u, as shown in lines 3-5.

Example 4. Back to Example 1. Suppose there are three
workers w1-w3 and three tasks t1-t3, whose locations are
shown in Fig. 5. The appearing order of the tasks is t1, t2, t3.
The obfuscated nodes t′1-t′3 and w′

1-w′
3 are shown in Fig. 4. t′1

first appears, and w′
1 and w′

2 are the two closest obfuscated
nodes to t′1. Suppose we assign t′1 to w′

2. After that t′2 appears

and is assigned to w′
1 as w′

1 is closer on the tree. Then
t′3 appears and we assign t′3 to w′

3. Finally we obtain the
matching M = {(t′1, w′

2), (t
′
2, w

′
1), (t

′
3, w

′
3)}.

Competitive Ratio Analysis. The competitive ratio analysis of

Alg. 4 leverages the observation that the expectation distance

between a node v and an obfuscated node u′ on the HST is

upper and lower bounded, as claimed in the lemmas below.

Lemma 1. Given a leaf node u, the obfuscated leaf node u′ of
u by our privacy mechanism, and a leaf node v, the expected
distance (on the HST) between u′ and v is no less than 1

3(2c−1)

times the distance between u and v, i.e., EM[dT (u
′, v)] ≥

1
3(2c−1)dT (u, v).

Proof. For simplicity, we use lu,v to represent the level of

the LCA of u and v. Then the distance between u and v is

dT (u, v) = 2lu,v+2−4. Denote Tlu,v−1(v) as the subtree which

contains v and locates at level lu,v − 1. In the following we

assume lu,v ≥ 1 as the lemma obviously holds when lu,v = 0.

u′ can be any leaf node and the corresponding probability

depends on its distance to u. The expectation of dT (u
′, v) is

EM[dT (u
′, v)] =

∑
a∈L

M(u)(a) · dT (a, v). (8)

Depending on whether a leaf node z is located in Tlu,v−1(v),
we partition the whole leaf node set L into Lin (inside

Tlu,v−1(v)) and Lout (outside Tlu,v−1(v)), and calculate their

values in Eq.(8) correspondingly.
We first bound the value of Eq.(8) for those nodes in

Lout, i.e.,
∑

a∈Lout
M(u)(a) · dT (a, v). The observation is

that dT (a, v) ≤ dT (u, v) for a ∈ Lout. Hence we have

∑

a∈Lout

M(u)(a) · dT (a, v) ≥
∑

a∈Lout

M(u)(a)dT (u, v)

=dT (u, v)(1−
∑

a∈Lin

M(u)(a))

=dT (u, v)(1− clu,v−1wtlu,v

WT
). (9)

When lu,v = 1, we have (1− wt1
Wu

) ≥ 1− e−4ε

1+e−4ε ≥ 1
3(2c−1) ,

and the lemma holds. Hereafter, we will assume lu,v ≥ 2.
For those nodes in Lin, their probability of being the

obfuscated node is the same, i.e., M(u)(a) = M(u)(b) for
a, b ∈ Lin. We bound the value of Eq.(8) as follows.

∑

a∈Lin

M(u)(a) · dT (u′, v)

=

lu,v−1∑

i=1

ci−1(c− 1)(2i+2 − 4)
wtlu,v

WT

=
wtlu,v

WT
{8(c− 1)

lu,v−1∑

i=1

ci−12i−1 − 4(c− 1)

lu,v−1∑

i=1

ci−1}

≥wtlu,v

WT
clu,v−1(

c− 1

2c− 1
2lu,v+2 − 4)

≥wtlu,v

WT
clu,v−1 1

3(2c− 1)
dT (u, v), (10)

where the last deduction comes from

(
c− 1

2c− 1
2lu,v+2 − 4)/dT (u, v)

=
c− 1

2c− 1
− (

4c

2c− 1
)/(2lu,v+2 − 4)

≥ c− 1

2c− 1
− c

3(2c− 1)
=

2c− 3

3(2c− 1)
≥ 1

3(2c− 1)
(11)

when lu,v ≥ 2 and c ≥ 2. From Eq.(9) and Eq.(10) we have
∑

a∈L

M(u)(a) · dT (u′, v)

=
∑

a∈Lout

M(u)(a) · dT (u′, v) +
∑

a∈Lin

M(u)(a) · dT (u′, v)

≥ 1

3(2c− 1)
dT (u, v). (12)

Lemma 2. Given a leaf node u, the obfuscated leaf node
u′ of u by our tree-based mechanism, and a leaf node v,
EM[dT (u

′, v)] ≤ O((ln 2c
ε)log2 2c)dT (u, v).

Proof. We calculate the upper bound of the expectation of

dT (u
′, v) in a similar way to Lemma. 1. Denote Tu,v as the

subtree rooted at LCA of u and v, and we use L′
in and L′

out to

represent the leaf nodes inside and outside Tu,v respectively.

For those leaf nodes in L′
in, we have

∑
a∈L′

in
M(u)(a) ·

dT (a, v) ≤ dT (u, v) as dT (a, v) ≤ dT (u, v).
For leaf nodes in L′

out,
∑

a∈L′
out

M(u)(a) · dT (a, v)

≤
D∑

i=lu,v

ci−1(c− 1)2i+2e(4−2i+2)ε/WT =

D∑

i=lu,v

Si (13)

where we denote Si = ci−1(c−1)2i+2e(4−2i+2)ε/WT as the

i-th term in Eq.(13). Notice that 2i+2 ≤ 2(2i+2 − 4) always

holds. Hence Slu,v
= O(dT (u, v)).

Observe that Si+1/Si = 2c/e2
i+2ε ≤ 2c. Let i∗ =

�log2 ln(2c)
ε � − 2, then 2c/e2

i∗+2ε ≤ 1. And for i > i∗ we

have
Si+1

Si
= 2c/e2

i+2ε ≤ 2c/e2
i∗+3ε ≤ 1

2c .
Now we are ready to get the upper bound of Eq.(13). For

lu,v ≤ i ≤ i∗ (if any), Si ≤ (2c)i−lu,vSlu,v
. Then we have

i∗∑

i=lu,v

Si ≤
i∗∑

i=lu,v

(2c)i−lu,vSlu,v =
(2c)i

∗−lu,v+1 − 1

2c− 1
Slu,v

≤ (2c)i
∗+1Slu,v = O((

ln 2c

ε
)log2 2c)dT (u, v). (14)

For i∗ < i ≤ D (if any),

D∑

i=i∗+1

Si ≤
D∑

i=i∗+1

(
1

2c
)i−i∗Si∗ ≤ Si∗

≤ (2c)i
∗
Slu,v = O((

ln 2c

ε
)log2 2c)dT (u, v). (15)

Summarizing two parts of leaf nodes in L′
in and L′

out:

EM[dT (u
′, v)] ≤ O((

ln 2c

ε
)log2 2c) · dT (u, v).

Based on Lemmas 1-2, we have the following theorem.

Theorem 3. Alg. 4 has a competitive ratio O(1
ε4 ·

logN log2 k), where N is the number of predefined points
on the HST, and k = min{n,m}.

Proof. An important property of HST is that the distance
on the tree can be bounded by d(u, v) ≤ E[dT (u, v)] ≤
O(log n)d(u, v). From Lemma. 1 we have EM[dT (t

′, w′)] ≥
1

3(2c−1)EM[dT (t, w
′)] ≥ 1

9(2c−1)2 dT (t, w). Similarly from

Lemma. 2 we have EM[dT (t
′, w′)] ≤ O((ln 2c

ε)2 log2 2c) ·
dT (t, w). Let lb = 1

9(2c−1)2 and ub = O((ln 2c
ε)2 log2 2c). Fur-

ther denote MOPT as the optimal matching in the Euclidean
space. Thus

EM,O[d(MA)] ≤ EM,O[
∑

(t,w)∈MA

dT (t, w)]

≤ 1

lb
· EM,O[

∑

(t,w)∈MA

dT (t
′, w′)]

≤ log k

lb
· EM,O[

∑

(t,w)∈MOPT

dT (t
′, w′)]

≤ ub · log k
lb

· EO[
∑

(t,w)∈MOPT

dT (t, w)]

≤ O(
ub · log2 k logN

lb
) · d(MOPT) (16)

where we use the fact that the HST-Greedy algorithm has
a competitive ratio of O(logN log2 k) when the HST is
constructed on the predefined points [15]. Substituting the
values of lb and ub, we have

EM,O[d(MA)] ≤ d(MOPT)O((
ln 2c

ε
)2 log2 2c · logN log2 k).

Since an arbitrary HST can be transformed to a binary HST

[20], we assume c = 2. Hence the competitive ratio of Alg. 4

in our tree-based mechanism is O(1
ε4 logN log2 k).

Complexity Analysis. Computing the distance between two

leaf nodes on the HST takes O(D) time. For each appearing

task, the algorithm enumerates all available workers and finds

the nearest one on the tree. Hence the time complexity of

Alg. 4 is O(Dnm).

IV. EXPERIMENTS

This section presents the evaluations of our methods.

A. Experimental Setup

Synthetic Datasets. Table II shows the parameter settings for

synthetic datasets. The default settings are marked in bold.

Specifically, task set (denoted by T) and worker set (denoted

by W) are generated in a 200 × 200 Euclidean space under

the Normal distribution with different mean μ and standard

deviation σ. Inspired by [10], the mean μ varies from 50 to

150 and the standard deviation σ varies from 10 to 30. We

also vary the number of tasks T , the number of workers W
and the value of ε. For scalability tests we vary the number of

tasks and workers at the same time from 2× 104 to 10× 104.

Real Datasets. Table III shows the parameter settings for the

real datasets, which are collected by Didi Chuxing [22] and

TABLE II: Experimental settings for synthetic data.

Parameters Settings
|T | 1000, 2000, 3000, 4000, 5000
|W | 3000, 4000, 5000, 6000, 7000

mean μ 50, 75, 100, 125, 150
standard deviation σ 10, 15, 20, 25, 30

privacy budget ε 0.2, 0.4, 0.6, 0.8, 1

scalability (|T | = |W |) 2× 104, 4× 104, 6× 104, 8× 104, 10× 104

TABLE III: Experimental settings for real data.

Parameters Settings
collected date 2016/11/01, · · · , 2016/11/30

|T | range from 4245 to 5034
|W | 6000, 7000, 8000, 9000, 10000
ε 0.2, 0.4, 0.6, 0.8, 1

published through the GAIA initiative [23]. The dataset in-

cludes 7,065,937 trip records of passengers in Chengdu, China

in November, 2016. We choose the records in a 10km×10km

region during the peak-hour period 14:00-14:30. The location

of each task is extracted by the origin of a passenger in the trip

records. Finally, the real datasets include 4,245 to 5,034 tasks

in the peak-hour periods of thirty days. We test on the tasks

in each day and report the average value of metrics. As the

information of workers and the privacy budget are not given

in the real datasets, we vary their values based on the same

settings as in synthetic datasets.

Compared Algorithms. Since no previous work has studies

the POMBM problem before, we combine the widely used

privacy mechanism (i.e., the planar Laplacian distribution [8])

and two popular algorithms for OMBM (i.e., greedy [10] and

HST-Greedy [15]) as the baselines.

• Lap-GR (Laplacian+Greedy): This is the first baseline,

where we use the planar Laplacian distribution [8] as the

privacy mechanism, and the greedy algorithm [10] in the

Euclidean space for task assignment.

• Lap-HG (Laplacian+HST-Greedy): This is the second

baseline which uses the planar Laplacian distribution [8]

as the privacy mechanism, and the HST-Greedy algo-

rithm [15] for task assignment.

• TBF (Our Tree-Based Framework): It uses Alg. 3 as the

privacy mechanism and Alg. 4 for task assignment.

Metrics. Note that all the compared algorithms are ε-Geo-

Indistinguishable. Yet they differ in the effectiveness and effi-

ciency of task assignment due to their differently obfuscated

location data of tasks and workers. Hence we mainly compare

their performances in terms of the total distance of their output

matching as well as the running time and memory usage of

their task assignment under the same privacy budget. Here

the running time refers to the total time an algorithm takes

from receiving a task to the completion of the assignment.

Implementation. All algorithms are implemented in C++. We

conducted experiments on a server with 40 Intel(R) Xeon(R)

E5 2.30GHz processors and 128GB memory. Each experiment

is repeated 10 times. The average results are reported.

10
00

20
00

30
00

40
00

50
00

|T|

0

1

2

3

4

to
ta

l d
is

ta
nc

e

104

Lap-GR
Lap-HG
TBF

(a) Total Distance of Varying |T |.
30

00

40
00

50
00

60
00

70
00

|W|

0

0.5

1

1.5

2

2.5

3

to
ta

l d
is

ta
nc

e

104

Lap-GR
Lap-HG
TBF

(b) Total Distance of Varying |W |.

50

75

10
0

12
5

15
0

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

to
ta

l d
is

ta
nc

e

104

Lap-GR
Lap-HG
TBF

(c) Total Distance of Varying μ.

50

75

10
0

12
5

15
0

0

0.5

1

1.5

2

to
ta

l d
is

ta
nc

e

104

Lap-GR
Lap-HG
TBF

(d) Total Distance of Varying σ.

10
00

20
00

30
00

40
00

50
00

|T|

0

2

4

6

8

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(e) Running Time of Varying |T |.

30
00

40
00

50
00

60
00

70
00

|W|

0

2

4

6

8

10

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(f) Running Time of Varying |W |.

50

75

10
0

12
5

15
0

0

1

2

3

4

5

6

7

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(g) Running Time of Varying μ.

50

75

10
0

12
5

15
0

0

1

2

3

4

5

6

7

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(h) Running Time of Varying σ.

10
00

20
00

30
00

40
00

50
00

|T|

16

16.5

17

17.5

m
em

or
y

us
ag

e
(M

B)

Lap-GR
Lap-HG
TBF

(i) Memory of Varying |T |.

30
00

40
00

50
00

60
00

70
00

|W|

16

16.5

17

17.5

18

m
em

or
y

us
ag

e
(M

B)

Lap-GR
Lap-HG
TBF

(j) Memory of Varying |W |.

50

75

10
0

12
5

15
0

16.5

17

17.5
m

em
or

y
us

ag
e

(M
B)

Lap-GR
Lap-HG
TBF

(k) Memory of Varying μ.

50

75

10
0

12
5

15
0

16.4

16.6

16.8

17

17.2

17.4

17.6

m
em

or
y

us
ag

e
(M

B)

Lap-GR
Lap-HG
TBF

(l) Memory of Varying σ.

Fig. 6: Results of varying |T |, |W |, μ and σ on synthetic datasets.

B. Experimental Results

Impact of Number of Tasks. The first column of Fig. 6 shows

the results of varying the number of tasks on synthetic datasets.

Fig. 6a depicts the total distance of all the algorithms. Our

TBF outperforms both Lap-GR and Lap-HG by up to 80.0%.

For running time (Fig. 6e), Lap-GR is the most efficient and

all algorithms consume more time as |T | increases. This is

because TBF and Lap-HG are based on the HST and have a

time complexity O(Dnm), while the time complexity of the

greedy algorithm Lap-GR is O(nm). The time complexity

of all algorithms is proportional to |T |. Both TBF and Lap-
HG are fast enough for real applications since each task can

be responded (i.e., assigned to a worker) in 0.0015 seconds.

In terms of memory usage, Lap-GR is still the most efficient

while TBF and Lap-HG consume more space of no more than

1.2 MB to construct the HST.

Impact of Number of Workers. The second column of

Fig. 6 shows the results of varying the number of workers

on synthetic datasets. As shown in Fig. 6b, the total distance

decreases with the increase of |W |. This is reasonable since

the tasks are more likely to be allocated to nearer workers

when the number of workers becomes larger. When there are

more workers, our TBF saves up to 72.8% total distances

than both Lap-GR and Lap-HG. For running time in Fig. 6f,

Lap-GR is the most efficient, followed by TBF and Lap-

HG, and all algorithms consume more time as |W | increases.

This is because the time complexity of the three algorithms is

proportional to the number of workers n. For memory cost in

Fig. 6j, all algorithms consume no more than 18MB space.

Impact of μ of Locations. The third column of Fig. 6 shows

the results of varying the mean of locations on synthetic

datasets. TBF achieves the shortest total distance, followed by

Lap-GR and Lap-HG (Fig. 6c). In particular, TBF achieves up

to 69.2% and 71.2% shorter total distance than Lap-GR and

Lap-HG, respectively. The time costs of all the algorithms are

relatively stable in Fig. 6g, because their time complexity is

irrelevant to μ. As for memory consumption, all the algorithms

need no more than 18MB space (Fig. 6k).

Impact of σ of Locations. The last column of Fig. 6 shows

the results under privacy preservation on varying the standard

deviation of locations on synthetic datasets. In terms of total

distance, TBF is still more effective than Lap-GR and Lap-
HG (Fig. 6d). Lap-GR is always the most efficient in terms

of running time and memory usage, followed by TBF and

Lap-HG (Fig. 6h and Fig. 6l).

Impact of Privacy Budget. The first column of Fig. 7

shows the results of varying the privacy budget ε on synthetic

datasets. As shown in Fig. 7a, the total distance of both Lap-
GR and Lap-HG is notably higher than TBF when ε is small

(e.g. 0.2), i.e., with a stricter privacy protection requirement. In

0.
2

0.
4

0.
6

0.
8 1

0

1

2

3

4

5

to
ta

l d
is

ta
nc

e

104

Lap-GR
Lap-HG
TBF

(a) Total Distance of Varying ε.
2 4 6 8 10

|T|,|W| (x 104, x 104)

0

1

2

3

4

5

6

to
ta

l d
is

ta
nc

e

105

Lap-GR
Lap-HG
TBF

(b) Total Distance of Scalability.

60
00

70
00

80
00

90
00

10
00

0

|W|

1

1.5

2

2.5

3

3.5

4

to
ta

l d
is

ta
nc

e

104

Lap-GR
Lap-HG
TBF

(c) Total Distance of Varying |W |.

0.
2

0.
4

0.
6

0.
8 1

1

2

3

4

5

6

7

to
ta

l d
is

ta
nc

e

104

Lap-GR
Lap-HG
TBF

(d) Total Distance of Varying ε.

0.
2

0.
4

0.
6

0.
8 1

0

1

2

3

4

5

6

7

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(e) Running Time of Varying ε.

2 4 6 8 10
|T|,|W| (x 104, x 104)

0

500

1000

1500

2000

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(f) Running Time of Scalability.

60
00

70
00

80
00

90
00

10
00

0

|W|

0

2

4

6

8

10

12

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(g) Running Time of Varying |W |.

0.
2

0.
4

0.
6

0.
8 1

2

4

6

8

10

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(h) Running Time of Varying ε.

0.
2

0.
4

0.
6

0.
8 1

16.4

16.6

16.8

17

17.2

17.4

17.6

m
em

or
y

us
ag

e
(M

B)

Lap-GR
Lap-HG
TBF

(i) Memory of Varying ε.

2 4 6 8 10

|T|,|W| (x 104, x 104)

15

20

25

30

35

40

45

m
em

or
y

us
ag

e
(M

B)

Lap-GR
Lap-HG
TBF

(j) Memory of Scalability.

60
00

70
00

80
00

90
00

10
00

0

|W|

16.5

17

17.5

18

18.5

19
m

em
or

y
us

ag
e

(M
B)

Lap-GR
Lap-HG
TBF

(k) Memory of Varying |W |.

0.
2

0.
4

0.
6

0.
8 1

16.5

17

17.5

18

m
em

or
y

us
ag

e
(M

B)

Lap-GR
Lap-HG
TBF

(l) Memory of Varying ε.

Fig. 7: Results of varying ε and scalability on synthetic datasets and results of varying |W | and ε on real datasets.

contrast, our TBF is relatively insensitive when ε varies from

0.2 to 1. It shows that our tree-based framework is fit for cases

with a high privacy budget. As a result, TBF achieves up to

88.0% shorter total distance than both Lap-GR and Lap-HG.

As shown in Fig. 7e and Fig. 7i, Lap-GR is still the most

efficient while TBF and Lap-HG are also efficient enough.

Scalability Tests. The second column of Fig. 7 shows the

results of scalability tests. TBF always outperforms the others

in terms of total distance (Fig. 7b). Both Lap-GR and Lap-
HG yield 70.0% times longer total distance than TBF. Lap-
GR is the most time-efficient, which conforms to the time

complexity analysis in Sec. III. TBF is also efficient, which

takes no more than 0.02 seconds to assign each newly arrived

task on average. In terms of memory usage, all algorithms are

efficient, which consume no more than 43.8 MB space.

Real Datasets. The last two columns of Fig. 7 show the results

of real datasets. TBF is always the most effective with up

to 56.2% shorter total distance than Lap-GR and Lap-HG
(Fig. 7c and Fig. 7d). Lap-GR is again the most time-efficient.

The time cost of all the algorithms increases linearly as |W |
increases, while stays stable when varying μ. This is because

the time complexity of the algorithms is proportional to |W |
(i.e., n), but is irrelevant to μ. All the algorithms are memory-

efficient, which consume no more than 20MB space.

Summary of Results. Our main experimental findings are:

• While all the algorithms are ε-Geo-Indistinguishable, our

TBF is the most effective on both synthetic datasets and

real datasets. It can save up to 79.4% and 80.0% total

distance than Lap-GR and Lap-HG.

• Particularly in case of stringent privacy requirements (i.e.,
with small ε), our TBF significantly outperforms the

baselines in terms of total distance.

• Our TBF is also efficient for real-time spatial crowdsourc-

ing applications and only consumes small storage.

C. A Case Study on Maximization of Matching Size

In addition to minimizing the total distance, another popular

objective in online task assignment in spatial crowdsourcing is

maximizing the total number of matching size under incom-

plete bipartite graph [9]. Hence we conduct a case study on

task assignment with this objective to validate our method.

Datasets. For synthetic datasets, we only vary the number of

workers |W | and the value of privacy budget ε with the same

parameter settings in Table II due to space limit. For real
datasets, we use the same procedure in Sec. IV-A to process

the raw data and vary the same parameters as in Table III.

Since there is no reachable distance for workers, we uniformly

generate the reachable distance of workers within [10, 20] for

synthetic datasets and [500, 1000] for real datasets.

30
00

40
00

50
00

60
00

70
00

|W|

1800

2000

2200

2400

2600

2800

m
at

ch
in

g
si

ze

Prob
TBF

(a) Matching Size of Varying |W |.
0.

2

0.
4

0.
6

0.
8 1

1400

1600

1800

2000

2200

2400

2600

2800

m
at

ch
in

g
si

ze

Prob
TBF

(b) Matching Size of Varying ε.

60
00

70
00

80
00

90
00

10
00

0

|W|

2500

3000

3500

4000

m
at

ch
in

g
si

ze Prob
TBF

(c) Matching Size of Varying |W |.

0.
2

0.
4

0.
6

0.
8 1

1000

1500

2000

2500

3000

3500

4000

m
at

ch
in

g
si

ze

Prob
TBF

(d) Matching Size of Varying ε.

30
00

40
00

50
00

60
00

70
00

|W|

0

1

2

3

4

5

6

7

ru
nn

in
g

tim
e

(s
ec

s)

Prob
TBF

(e) Running Time of Varying |W |.

0.
2

0.
4

0.
6

0.
8 1

0

1

2

3

4

5

ru
nn

in
g

tim
e

(s
ec

s)

Prob
TBF

(f) Running Time of Varying ε.

60
00

70
00

80
00

90
00

10
00

0

|W|

0

2

4

6

8

10

12

14

ru
nn

in
g

tim
e

(s
ec

s)

Prob
TBF

(g) Running Time of Varying |W |.

0.
2

0.
4

0.
6

0.
8 1

2

4

6

8

10

ru
nn

in
g

tim
e

(s
ec

s)

Prob
TBF

(h) Running Time of Varyint ε.

Fig. 8: Results of varying |W | and ε on synthetic datasets and the results on real datasets.

Compared Algorithms.
• Prob [7]: It uses the Laplacian distribution to protect the

privacy and a probability-based algorithm to assign tasks.

• TBF: We use our tree-based privacy mechanism, and for

each task find the nearest reachable worker on the HST.

Metrics and Implementation. The implementation is the

same as in Sec. IV-A. Due to page limit, we only compare

the algorithms in terms of matching size and running time.

Experimental Results.
(1) Impact of Number of Workers. The first column of

Fig. 8 shows the results of varying the number of workers

|W | on synthetic datasets. In terms of matching size, TBF
always outperforms the baseline Prob with up to 16.0%

more number of assigned tasks (Fig. 8a). In terms of

running time, Prob is more efficient while TBF can still

response each task within 0.002 seconds (Fig. 8e).

(2) Impact of Privacy Budget. The second column of Fig. 8

shows the results of varying the privacy budget ε on

synthetic datasets. For matching size (see Fig. 8b), TBF
achieves 5.6% to 47.7% more number of assigned tasks.

As shown in Fig. 8f, the running time of both algorithms

are relatively stable with the increase of ε.
(3) Real Datasets. The last two columns of Fig. 8 show

the results of varying the privacy budget ε on synthetic

datasets. In Fig. 8c and Fig. 8d, TBF consistently obtains

the larger matching size by up to 26.8% times larger than

Prob. As for running time, Prob is still more efficient

while TBF is still able to response each task in no more

than 0.003 seconds in Fig. 8g and Fig. 8h.

(4) Summary of Results. While both Prob and TBF satisfy

Geo-Indistinguishability, our algorithm TBF is notably

more effective than Prob by up to 47.7% larger matching

size. Though Prob is more efficient, TBF is still efficient

enough for real-world applications with no more than

0.003 seconds average response time.

V. RELATED WORK

Online Minimum Bipartite Matching. Online minimum

bipartite matching finds a maximal matching on a complete

bipartite graph with a minimum total distance. It has been a

popular topic in spatial crowdsourcing [10], [19], [15].

Meyerson et al. [15] propose to embed the points in the

Euclidean space to an HST and apply a greedy algorithm on

the HST to assign a worker to each task. They prove that

the algorithm has a competitive ratio of O(log3 k), where

k = min{n,m} is the minimum between n and m. Bansal et
al. [19] also design an algorithm based on HST. The algorithm

successively assigns the task to workers (including those

matched ones) until it finds an unmatched worker as the result.

Recently, Tong et al. [10] conducts an experimental study

on the state-of-the-art online minimum bipartite matching

algorithms and shows that the heuristic greedy algorithm

performs well on many practical settings.

Our work is inspired by these findings, i.e., conducting

online matching (e.g. using even a greedy algorithm on an

HST) may have guaranteed effectiveness for task assignment.

However, all the proposals are without privacy protection.

Privacy-Preserving Task Assignment in Spatial Crowd-
sourcing. There has been extensive research on privacy-

preserving task assignment in spatial crowdsourcing [6], [7],

[5], [24], [25], [26], [27], [28], [29].

A number of works [6], [30] protect the privacy of tasks

or workers by transforming the location into a cloaked region,

and task assignment is then executed based on the cloaked

regions. In [6] and [30], the authors propose a two-stage

approach, where the first stage globally assigns tasks based

on the cloaked locations and the second stage locally chooses

tasks based on the worker’s exact location. However, these

schemes are only for offline task assignment, which is unfit

for many real-world applications such as ride-sharing.

Differential Privacy [31] is proposed as a stronger alterna-

tive of cloaking and has been a new standard for privacy pro-

tection. It requires that a data record cannot be distinguished

by the aggregation queries (e.g. count) over two neighbor

datasets. For example, To et al. [5] propose the Private Spatial

Decomposition [32] to protect the differential privacy of the

count of workers in regions and the task is then assigned to

all the workers in a chosen region. However, existing studies

focus on the privacy of aggregated queries on tasks or workers.

They are unfit for queries on individual locations, which are

important for task assignment in spatial crowdsourcing.

More recently, Geo-Indistinguishability [8] is proposed as a

generalization of differential privacy to protect the privacy of

individual location queries. Wang et al. [25] explored how

to ensure ε-Geo-Indistinguishability for workers in spatial

crowdsourcing. However, they neglect privacy protection for

tasks and only consider offline task assignment.

Our work is most related to [7]. Both [7] and our work

are ε-Geo-I. Compared with [7], we focus on task assignment

with minimum distance, another important objective for task

assignment in spatial crowdsourcing. We also propose a novel

tree-based privacy mechanism, which, for the first time, allows

online task assignment with a guaranteed competitive ratio.

VI. CONCLUSION

In this paper we explore privacy protection of location

data for online task assignment in spatial crowdsourcing

which (i) is differentially private and (ii) allows effective task

assignment on the permuted data. We propose a novel pri-

vacy mechanism based on Hierarchically Well-Separated Trees

(HSTs) and prove the mechanism is ε-GEO-Indistinguishable.

We further design a faster implementation of the mechanism

via random walk. We show that when operating on the data

permuted by our mechanism, there exists a task assignment

algorithm with a competitive ratio of O(1
ε4 logN log2 k),

where ε is the privacy budget, N is the number of predefined

nodes on the HST, and k is the matching size. Extensive

experiments on synthetic and real datasets show that online

task assignment under our privacy mechanism is notably more

effective than under prior differentially private mechanisms.

ACKNOWLEDGMENT

We are grateful to anonymous reviewers for their construc-

tive comments. Qian Tao, Yongxin Tong and Ke Xu’s works

are partially supported by the National Science Foundation of

China (NSFC) under Grant No. 61822201 and U1811463. Lei

Chen’s work is partially supported by the Hong Kong RGC

GRF Project 16209519, the National Science Foundation of

China (NSFC) under Grant No. 61729201, Science and Tech-

nology Planning Project of Guangdong Province, China, No.

2015B010110006, Hong Kong ITC ITF Grants ITS/044/18FX

and ITS/470/18FX, Didi-HKUST Joint Research Lab Grant,

Microsoft Research Asia Collaborative Research Grant and

Wechat Research Grant.
REFERENCES

[1] Y. Tong, L. Chen, and C. Shahabi, “Spatial crowdsourcing: Challenges,
techniques, and applications,” PVLDB, 2017.

[2] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi, “Spatial crowd-
sourcing: a survey,” The VLDB Journal, 2019.

[3] Q. Tao, Y. Zeng, Z. Zhou, Y. Tong, L. Chen, and K. Xu, “Multi-worker-
aware task planning in real-time spatial crowdsourcing,” in DASFAA,
2018.

[4] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” PVLDB, 2018.

[5] H. To, G. Ghinita, and C. Shahabi, “A framework for protecting worker
location privacy in spatial crowdsourcing,” PVLDB, 2014.

[6] L. Pournajaf, L. Xiong, V. S. Sunderam, and S. Goryczka, “Spatial task
assignment for crowd sensing with cloaked locations,” in MDM 2014.

[7] H. To, C. Shahabi, and L. Xiong, “Privacy-preserving online task
assignment in spatial crowdsourcing with untrusted server,” in ICDE
2018.

[8] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
“Geo-indistinguishability: differential privacy for location-based sys-
tems,” in CCS 2013.

[9] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, “Online mobile micro-
task allocation in spatial crowdsourcing,” in ICDE 2016.

[10] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu, “Online minimum
matching in real-time spatial data: Experiments and analysis,” PVLDB,
2016.

[11] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye, “Dynamic pricing
in spatial crowdsourcing: A matching-based approach,” in SIGMOD,
2018.

[12] Y. Wang, Y. Tong, C. Long, P. Xu, K. Xu, and W. Lv, “Adaptive dynamic
bipartite graph matching: A reinforcement learning approach,” in ICDE,
2019.

[13] Y. Zeng, Y. Tong, L. Chen, and Z. Zhou, “Latency-oriented task
completion via spatial crowdsourcing,” in ICDE, 2018.

[14] A. Alfarrarjeh, T. Emrich, and C. Shahabi, “Scalable spatial crowdsourc-
ing: A study of distributed algorithms,” in MDM 2015.

[15] A. Meyerson, A. Nanavati, and L. J. Poplawski, “Randomized online
algorithms for minimum metric bipartite matching,” in SODA 2006.

[16] L. Kazemi and C. Shahabi, “Geocrowd: enabling query answering with
spatial crowdsourcing,” in GIS 2012.

[17] T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and K. Xu,
“Trichromatic online matching in real-time spatial crowdsourcing,” in
ICDE, 2017.

[18] Y. Tong, L. Wang, Z. Zhou, B. Ding, L. Chen, J. Ye, and K. Xu, “Flexible
online task assignment in real-time spatial data,” PVLDB, 2017.

[19] N. Bansal, N. Buchbinder, A. Gupta, and J. Naor, “A randomized
o(log2k)-competitive algorithm for metric bipartite matching,” Algo-
rithmica, 2014.

[20] Y. Emek, S. Kutten, and R. Wattenhofer, “Online matching: haste makes
waste!” in STOC 2016.

[21] J. Fakcharoenphol, S. Rao, and K. Talwar, “A tight bound on approxi-
mating arbitrary metrics by tree metrics,” in STOC 2003.

[22] Didi Chuxing. [Online]. Available: http://www.didichuxing.com/
[23] GAIA initiative. [Online]. Available: http://gaia.didichuxing.com
[24] H. To, G. Ghinita, L. Fan, and C. Shahabi, “Differentially private

location protection for worker datasets in spatial crowdsourcing,” IEEE
Transactions on Mobile Computing, 2017.

[25] L. Wang, D. Yang, X. Han, T. Wang, D. Zhang, and X. Ma, “Location
privacy-preserving task allocation for mobile crowdsensing with differ-
ential geo-obfuscation,” in WWW 2017.

[26] J. Li, A. Liu, W. Wang, Z. Li, G. Liu, L. Zhao, and K. Zheng,
“Towards privacy-preserving travel-time-first task assignment in spatial
crowdsourcing,” in APWeb-WAIM 2018.

[27] A. Liu, W. Wang, S. Shang, Q. Li, and X. Zhang, “Efficient task
assignment in spatial crowdsourcing with worker and task privacy
protection,” GeoInformatica, 2018.

[28] H. To and C. Shahabi, “Location privacy in spatial crowdsourcing,” in
Handbook of Mobile Data Privacy, 2018.

[29] L. Pournajaf, D. A. Garcia-Ulloa, L. Xiong, and V. S. Sunderam,
“Participant privacy in mobile crowd sensing task management: A survey
of methods and challenges,” SIGMOD Record, 2015.

[30] L. Pournajaf, L. Xiong, V. S. Sunderam, and X. Xu, “STAC: spatial
task assignment for crowd sensing with cloaked participant locations,”
in GIS 2015.

[31] C. Dwork, “Differential privacy,” in ICALP 2006.
[32] G. Cormode, C. M. Procopiuc, D. Srivastava, E. Shen, and T. Yu,

“Differentially private spatial decompositions,” in ICDE 2012.

